MARTINGALES AND BROWNIAN MOTION: FINAL EXAM 8 DECEMBER, 2015

Each question carries 10 marks. Maximum you can score is 50. Duration of the exam: 120 minutes.

1. Let a < b be real numbers and let A, B, α, β be strictly positive numbers. Set $a_k = a + \frac{A}{k^{\alpha}}$ and $b_k = b - \frac{B}{k^{\beta}}$. Assume that $a < a_k < b_k < b$ for all k. Let μ_k be the uniform distribution on $[a_k, b_k]$ and let μ be the uniform distribution on [a, b]. Decide for which values of A, B, α, β is

- (1) $\otimes_{k\geq 1}\mu_k \ll \otimes_{k\geq 1}\mu$.
- (2) $\otimes_{k\geq 1}\mu_k\perp\otimes_{k\geq 1}\mu_k$.

2. Suppose *X* is a random variable with $\mathbf{P}{X = 2} = \mathbf{P}{X = 1} = \frac{1}{5}$ and $\mathbf{P}{X = -1} = \frac{3}{5}$. Let *W* denote a standard 1-dimensional Brownian motion.

- (1) Find a stopping time τ wuch that $W_{\tau} \stackrel{d}{=} X$. [2 points extra if you do not use additional randomness]
- (2) What is $\mathbf{E}[\tau]$?

3. Let (X_t, Y_t) be a standard 2-dimensional Brownian motion started at (x, y) where $y \neq 0$. Let τ be the first time when the Brownian motion hits the real line. If $R = \sqrt{x^2 + y^2}$, then show that $\mathbf{P}\{X_{\tau} \in [-R, R]\} = \frac{1}{2}$.

4. Let *W* is a standard 1-dimensional Brownian motion and let $W_{br}(t) = W(t) - tW_1$, $0 \le t \le 1$, be a Brownian bridge (which can also defined as *W* given $W_1 = 0$).

- (1) Write an expression for the probability that $\mathbf{P}\{M_1 \ge u, |B_1| \le \epsilon\}$ for u > 0.
- (2) Deduce that $\mathbf{P}\{\max_{t \le 1} W_{br}(t) \ge u\} = e^{-2u^2}$ for u > 0.

5. Let X_1, X_2, \ldots be i.i.d. random variables with zero mean and unit variance. For $n \ge 1$, define

$$W_n^*(t) = \begin{cases} \frac{1}{\sqrt{n}}(S_k - S_n) & \text{if } t = \frac{k}{n}, \ 0 \le k \le n, \\ \text{linear in each interval} & (\frac{k}{n}, \frac{k+1}{n}), \ 0 \le k \le n-1 \end{cases}$$

Show that W_n^* converges in distribution to Brownian bridge.

6. Let $X_1, X_2, ...$ be i.i.d. random variables with $\mathbf{P}\{X_1 = +1\} = p$ and $\mathbf{P}\{X_1 = -1\} = q$ where $\frac{1}{2} and <math>q = 1 - p$. Let $S_n = X_1 + ... + X_n$.

- (1) If $\lambda > 0$, set $X_n^{\lambda} = \lambda^{S_n}$. For which values of λ is X^{λ} a sub-martingale or supermartingale or martingale?
- (2) Use the first part to find the probability that the random walk $(S_n)_{n\geq 0}$ never hits the level -1.